• 姓名: 靳洪允
  • 职称: 教授
  • 学位: 博士
  • 中国地质大学(武汉)
  • 材料与化学学院
  • 靳洪允 ( 教授 )

    的个人主页 http://grzy.cug.edu.cn/jinhongyun

  • 教授 博士生导师 硕士生导师
  • 主要任职 : 材料系主管研究生副主任,教育部工程中心副主任
  • 曾获荣誉 : 湖北省技术发明奖二等奖两次
  • 性别 : 男
  • 出生年月 : 1980年08月05日
  • 毕业院校 : 中国地质大学(武汉)
  • 学历 : 博士研究生毕业
  • 学位 : 博士学位
  • 在职信息 : 在职
  • 所在单位 : 材料与化学学院
  • 入职时间 : 2009年07月01日
  • 学科 : 材料科学与工程
  • 办公地点 : 科教五,446办公室
  • 联系方式 : 13476118841
  • Email : jinhongyun@cug.edu.cn
个人简介

靳洪允,博士,教授,博士生导师,材料学科骨干教授,学科方向带头人。担任材料科学与工程系主管研究生副主任,先进涂层与新能源材料器件团队负责人。美国华盛顿大学访问学者,兼任中国硅酸盐学会微纳技术分会理事、副秘书长。2009年6月毕业于中国地质大学(武汉)留校工作。主持和承担基金委重大项目、国家重点研发计划、国家自然科学基金、装发教育部联合基金、军队项目、湖北省科技创新重大专项、湖北省重点研发计划项目等课题10余项。主要研究兴趣集中在固态锂电池、耐高温陶瓷航空发动机涂层等领域,以第一作者或者通讯作者在《Nano Energy》、《Journal of Materials Chemistry A》等刊物上发表SCI检索论文60余篇;授权国家发明专利八项,其中两项转化;参与制定高性能预应力管道灌浆料压浆施工行业工法;两次荣获湖北省技术发明奖贰等奖。

一、学习和工作经历

2013.12 ~2015.1        University of Washington                          访问学者

2015.09~2016.08       山东大学                                                     访问学者

2018.12~至今          中国地质大学(武汉)材化学院                 教授

2010.12~2018.11       中国地质大学(武汉)材化学院               副教授

2009.07~2010.11       中国地质大学(武汉)材化学院                 讲师

2004.07~2009.06       中国地质大学(武汉)材化学院                博士

2000.09~2004.06       中国地质大学(武汉)材化学院                学士

二、主要研究方向

1、航空发动机涂层

2、固态锂(硫)电池

3、3D/4D打印新能源器件

4、材料与器件多场耦合表征

5、纳米矿物材料及其工程化

三、主持的主要科研项目

13.梯度样品微观层次高通量表征实验方法,国家自然科学基金重大项目子课题,直接经费80万元, 主持;2022.1-2026.12

12.示踪深部碳、氧循环的金属同位素原位微区分析技术,国家重点研发计划子课题,直接经费52万元, 主持;2021.1-2025.12

11.车载固态锂电池软包电芯关键材料研究与验证,湖北省重点研发项目,项目经费100万元, 主持;2022.1-2023.12

10.航空发动机精密零件修复用激光熔覆材料研制及验证,中国人民解放军***,项目经费100万元, 主持;2019.12-2021.12

9.********涂层研制******,装备预研教育部联合基金,项目经费80万元, 主持;2019.1-2021.6

8.高离子电导固态电池电解质研究,企业合作开发项目,项目经费130万元, 主持;2019.12-2021.12

7.稀土共掺杂纳米氧化锆粉体材料制备及其热障涂层应用研究,湖北省科技创新重大专项,项目经费200万元, 主持;2018.5-2021.6

6.石英球化过程中气-固两相流运动机理及其流体动力学研究(51102218),国家自然科学基金,项目经费25万元, 主持

5.大规模集成电路封装用球形硅微粉研究(201210321099),武汉市科技攻关重点课题,项目经费20万元, 主持

4.先进石英材料研发中的关键技术及科学问题研究(CUG120118),中央高校特色学科团队项目,项目经费100万元, 主持

3.锆酸镧系热障涂层材料制备及其高温性能研究(CUG120402),中央高校“摇篮计划”人才基金,项目经费30万元, 主持

2.玄武岩纤维性能、应用及工程化研究,企业合作开发项目,项目经费40万元, 主持

1.轻质矿物填充摩擦材料摩擦、磨损机制及有限元模拟研究(2013CFB412),湖北省自然科学基金项目,项目经费6万元, 主持

四、主要学术论文

[40]Pei Dexuan, Ma Rui,  Jin Hongyun*, et al. Enhanced Ion Transport Behaviors in Composite Polymer Electrolyte: the Case of Looser Chain Folding Structure[J]. Journal of Materials Chemistry A, 2022, DOI: 10.1039/D1TA10669D.

[39] Xu Chunhui, Luo lirong,  Jin Hongyun*, et al.Thermal expansion study on LnMgAl11O19 (Ln=La, Gd) by high temperature X-ray diffraction[J]. Ceramic Intentional, 2021. (Accept) 

[38]Luo Xuewei, Luo lirong,  Jin Hongyun*, et al. Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties[J].Journal of the European Ceramic Society,2021, DOI:org/10.1016/j.jeurceramsoc.2021.12.080

[37]Duan S S,Huang Can,  Jin Hongyun*, et al. Competition between activation energy and migration entropy in lithium ion conduction in superionic NASICON-type Li1-3xGaxZr2 (PO4)3 [J]. Journal of Materials Chemistry A, 2021, DOI: 10.1039/D0TA11192A.

[36]Liu Zixian, Tian Xiaocong,  Jin Hongyun* , et al. Direct Ink Writing of Li1.3Al0.3Ti1.7(PO4)3-Based Solid-State Electrolytes with Customized Shapes and Remarkable Electrochemical Behaviors [J]. Small, 2021, DOI: 10.1002/smll.202002866.

[35]Ma Hui, Tian Xiaocong,  Jin Hongyun*, et al. Tailoring Pore Structures of 3D Printed Cellular High-Loading Cathodes for Advanced Rechargeable Zinc-Ion Batteries[J]. Small, 2021, DOI:10.1002/smll.202100746.

[34]Tian Xiaocong, Wang, Teng, Jin Hongyun*, et al. A universal strategy towards 3D printable nanomaterial inks for superior cellular high-loading battery electrodes[J]. Journal of Materials Chemistry A, 2021, DOI: 10.1039/d1ta03236d.

[33]Li Yuhang, Liu Min,  Jin Hongyun* , et al. A High-Voltage Hybrid Solid Electrolyte Based on Polycaprolactone for High-Performance All-Solid-State Flexible Lithium Batteries[J]. ACS Applied Energy Materials, 2021, DOI: acsaem.0c02846.

[32]J X Yu, S S Duan,  Jin Hongyun*, et al. Spatially Resolved Electrochemical Strain of Solid-State Electrolytes via High Resolution Sequential Excitation and Its Implication on Grain Boundary Impedance [J]. Small Methods, 2020, DOI: 10.1002/smtd.202000308.

[31]Su Yong, Fu Bi,  Jin Hongyun* et al. Three-dimensional mesoporous gamma-Fe2O3@carbon nanofiber network as high performance anode material for lithium- and sodium-ion batteries[J]. Nanotechnology, 2020, DOI:10.1088/1361-6528/ab6433

[30]Duan S S,Junxi Yu,  Jin Hongyun*, et al. Selective doping to relax glassified grain boundaries substantially enhances the ionic conductivity of LiTi2(PO4)3 glass-ceramic electrolytes[J]. Journal of Power Source, 2020, DOI:10.1016/j.jpowsour.2019.227574.

[29]T Wang, X Tian,  Jin Hongyun*, et al.3D printing-based cellular microelectrodes for high-performance asymmetric quasi-solid-state micro-pseudocapacitors[J]. Journal of Materials Chemistry A, 2020, DOI:10.1039/c9ta11386j.

[28]Luo, Lirong, Xu, Chunhui,  Jin Hongyun*, et al. Effect of CaO and CeO2 co-doping on thermo-physical properties of La2Zr2O7 [J].Journal of Asian Ceramic Societies,2020, DOI: 10.1080/21870764.2020.1840700.

[27] Jin Hongyun , Keke Zhou, Zhengjia Ji, et al. Comparative tribological behavior of friction composites containing natural graphite and expanded graphite[J]. Friction,2020, DOI:org/10.1007/s40544-019-0293-3.

[26]X Tian, K Tang,  Jin H Y*, et al. Boosting capacitive charge storage of 3D-printed micro-pseudocapacitors via rational holey graphene engineering [J]. Carbon, 2019, DOI:org/10.1016/j.carbon.2019.08.089.

[25]Duan S S,  Jin H Y*,Junxi Yu, et al. Non-equilibrium Microstructure of Li1.4Al0.4Ti1.6(PO4)3 Superionic Conductor by Spark Plasma Sintering for Enhanced Ionic Conductivity[J]. Nano Energy, 2018, 51: 19-25.

[24] Jin H Y, Dong J, Uchaker Evan, et al. Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 17563-17568.

[23]Ji, Z J, Luo W Y,  Jin H Y*, et al. Effects of the shapes and dimensions of mullite whisker on the friction and wear behaviors of resin-based friction materials[J]. Wear, 2018, 406-407: 118-125.

[22]Hou H C, Ji Z J,  Jin H Y*, et al. Spheroidizing mechanisms and simulation of spherical silica in Oxygen Acetylene flame[J]. Advanced Powder Technology, 2018 (29) :789-795.

[21] Xu L, Xu C H,  Jin H Y*, et al. Research on Synthesis of β-Ni(OH)2 Nanorods and Removing Congo Red from Polluted Water[J]. Chemistry Letters, 2018, 47(2): 232-235.

[20]Jin HY, Liu M, Hou S E, et al. Nanoporous carbon leading to the high performance of Na3V2O2(PO4)2F@Carbon/Graphene cathode in sodium ion battery[J]. CrystEngComm, 2017, DOI: 10.1039/C7CE00726D.

[19]Liu M,  Jin HY*, Evan Uchaker, et al. One-pot synthesis of in-situ carbon-coated Fe3O4 as long-life lithium-ion battery anode[J]. Nanotechnology, 2017, 28(15): 155603-155611.

[18]Ji Z J,  Jin H Y*, Luo W Y, et al. The effect of crystallinity of potassium titanate whisker on the tribological behavior of NAO friction materials[J]. Tribology International, 2017, 107: 213-220.

[17]Xu C H,  Jin H Y*, Zhang Q F, et al. A novel Co-ions complexation method to synthesize pyrochlore La2Zr2O7[J]. Journal of the European Ceramic Society, 2017, 37(8): 2871-2876.

[16]Xu C H, Li J Y,  Jin H Y*, et al.Al2O3–Fe3O4–expanded graphite nano-sandwich structure for fluoride removal from aqueous solution[J]. RSC Adv., 2016, 6: 97376-97384.

[15] Jin H Y, Ji Z J, Yuan J, et al. Research on Removal of Fluoride in Aqueous Solution by Alumina-modified Expanded Graphite Composite [J]. Journal of Alloys and Compounds, 2015, 620: 361-367.

[14]Ji Z J,  Jin H Y*, Wu Y Q, et al. Numerical simulation of silica particle trajectory in flow field and silica particle spheroidizing in oxygen-acetylene flame spheroidization process [J]. Powder technology, 2015, 286: 451-458.

[13]Uchaker Evan,  Jin H Y, Pei Y, et al. Elucidating the Role of Defects for Electrochemical Intercalation in Sodium Vanadium Oxide, [J]. Chemistry of Materials 2015, 27 (20): 7082-7090.

[12] H Y Jin, Z Ji. The preparation of a core/shell structure with alumina coated spherical silica powder[J]. Colloids and Surfaces A, 2014,441: 170-177.

[11]Wu Y Q,  Jin H Y*, Ji Z J, et al. Simulation of Temperature Distribution in Disk Brake Considering a Real Brake Pad Wear[J]. Tribology Letters, 2014, 56:205-213.

[10]Liu M,  Jin H Y *, Ji Z J, et al. Synthesis and self-assembled mechanism of CuO peony-flowers by a composite hydroxide-mediated approach at low temperature[J]. Crystal Research and Technology, 2014, 49(10):820-828.

[9] Jin H Y, Yuan J, Ji Z J, et al. The exploration of a new adsorbent as MnO2 modified expanded graphite [J]. Materials Letters. 2013, 110: 69-72.

[8] Jin H Y, Wu YQ, Li Y L, et al. The effect of spherical silica powder on the tribological behavior of phenolic resin-based friction materials [J]. Tribology Letters, 2013, 51(1): 65-72.

[7]Wu YQ,  Jin H Y*, Hou S E, et al. Effects of glass-to-rubber transition on the temperature, load and speed sensitivities of nano-ZrO2 reinforced polybenzoxazine. Wear, 2013, 297 (2):1025-1031.

[6] Wu YQ,  Jin H Y*, Hou S E, et al. A load-dependent model to investigate the velocity dependence of friction coefficient: ZrO2/Polymer nanocomposite[J]. Tribology Letters, 2012, 48(3): 285-291.

[5] Jin H Y, Hou S E*, Xiao H Y, et al. Synthesis of lanthanum zirconium oxide Nanomaterials through Composite-Hydroxide-Mediated approach [J]. Materials Research Bulletin, 2012, 47(1): 51-53.

[4]Jin H Y, Hou S E*, Xiao H Y, et al. Preparation of low radioactivity spherical silicon oxide powders via chemical-flame spheroidizing Process[J]. Colloids and Surfaces A, 2011, 381(1):13-16.

[3]Jin H Y, Xiao H Y, Hou S E*, et al. Effects of spherical silica on the properties of an epoxy resin system[J]. Journal of Applied Polymer Scienc, 2011, 121(2): 648-653.

[2] Jin H Y, Liu J, Xu L. Preparation of fused spherical silica powder by oxygen-acetylene flame spheroidization process [J]. Journal of Materials Processing Technology, 2010, 210(1):81-84.

[1] Jin H Y, Wang N, Xu L, Hou S E. Synthesis and conductivity of cerium oxide nanoparticles [J]. Materials Letters, 2010, 64(11):1254-1256.

五、主要国家发明专利

1.  靳洪允等.一种造粒氧化锆填充的树脂基摩擦材料及其制备方法,ZL201710534573.6, 2020.7,国家发明专利.

2. 靳洪允等.一种铈双掺锆酸镧纳米陶瓷粉体及其制备方法,ZL201710325095.8, 2020.6,国家发明专利.

3.  靳洪允等.一种制备纳米结构锆酸镧粉体的方法,ZL201610947142.8, 2019.7,国家发明专利.

4.  靳洪允等.一种采用共离子络合法的方法制备镁基六铝酸镧粉体的方法,ZL201610947144.7, 2019.7,国家发明专利.

5.  靳洪允等.一种复合水泥膨胀剂及其制备方法,ZL103332883B,2015.3,国家发明专利.

6.  靳洪允等. 深地层钻探用抗高温累托石水基钻井液,ZL201010262766.9,2013.11,国家发明专利.

7.  靳洪允等. 一种高纯度超细球形石英粉及制备方法,ZL200910062636.8,2011.8,国家发明专利.

8.  靳洪允等.一种高纯度、低放射性球形石英粉及其制备方法,ZL200910062637.2,2011.4,国家发明专利.

六、获奖情况

1. 多维度微纳结构纳米矿物材料及其应用研究, 湖北省技术发明奖贰等奖,2015年;

2. 高纯度金刚石超精抛光系列产品开发与应用, 湖北省技术发明奖贰等奖,2011年。

七、联系方式

通讯地址:湖北省武汉东湖新技术开发区锦程街68号

中国地质大学(武汉)未来城校区材化楼446室

邮编:430078

联系电话:13476118841;

E-mail: jinhongyun@cug.edu.cn或13476118841@126.com

教育经历
  • [1] 2004.7 -- 2009.6

    中国地质大学(武汉)  材料  博士研究生  博士学位

  • [2] 2000.7 -- 2004.6

    中国地质大学(武汉)  化学  大学本科毕业  学士学位

工作经历
  • [1] 2015.9 -- 2016.8

    山东大学 访问学者

  • [2] 2013.12 -- 2015.1

    美国华盛顿大学 访问学者

  • [3] 2019.1 -- 至今

    材料与化学学院 教授 教师

  • [4] 2011.1 -- 2018.12

    材料与化学学院 副教授 教师

  • [5] 2009.7 -- 2010.12

    材料与化学学院 讲师 教师

社会兼职
  • [1]

    中国硅酸盐学会微纳技术分会理事、副秘书长。

研究方向
  • [1] 1、耐高温陶瓷及涂层
    2、固态锂电池
    3、材料与器件多场耦合表征
教师其他联系方式
  • [1] 邮编 :
  • [2] 传真 :
  • [3] 通讯/办公地址 : 武汉市东湖高新区锦城街68号
  • [4] 办公室电话 :
  • [5] 移动电话 : 13476118841
  • [6] 邮箱 : jinhongyun@cug.edu.cn
先进涂层与新能源材料器件团队